Saturday 18 June 2011

Going Stereoscopic

Throughout this week I have been working through some Digital Tutors content, titled "Stereoscopic 3D in Maya" (more information here).

This course has been designed around generating material which can be used to create 3D images and videos (in my case, using the anaglyph method, which is viewable using red/cyan glasses). There was a lot of instruction regarding "safe" 3D which follows an accepted set of rules, and is designed to ensure that the output will not be uncomfortable to view.

Fortunately Maya has had time to develop its stereoscopic toolset before I started using it, making life significantly easier - some helpful features included the ability to adjust interaxial separation and the zero parallax value (which can be visualised using a coloured plane relative to the stereoscopic camera), aswell as showing the 'safe' area for objects to be placed within. There is also a preview mode which allows you to view/playblast anaglyph material before you commit to rendering. The rendering process is also relatively straighforward (and doesnt differ much from normal rendering), as Maya can batch render multiple cameras (centre, left and right).

The Digital Tutors content also gave a good overview of how to combine the left and right images, and colour them appropriately using both Photoshop and After Effects - ensuring that I could apply these techniques to my own work.

After completing the Digital Tutors course, I wanted to experiment with implementing these stereoscopic techniques into my workflow, so I started off with a basic test - a static scene with 5 cubes, randomly rotated and placed at different depths from the camera. The left and right eye renders were composited in Photoshop and can be seen below (don't forget your 3D glasses!);

cellVis_anaglyphImageTest

The next step was to test an animated sequence in After Effects. I created a new scene, with a cube rotating on multiple axes, a sphere moving forwards and backwards (along the Z-axis) and a pyramid rotating on the Y-axis. I chose these shapes and types of movements as it would allow me to see how well each of the different types of motion would work when finished. The completed video can be seen below;


I then chose to add a stereoscopic camera to one of my existing cell visualisation scenes. Unfortunately, when I first rendered this, I realised the cell material was almost black and therefore lost most of it's colour (and therefore depth). I modified the shader to use 50% gray, which worked significantly better. The following 2 images show a still frame taken from my cell visualisation project (the first image is stereoscopic, the second is 'flat' for comparison);

cellVis_mayaAnaglyphTest

cellVis_mayaAnaglyphTest_flat

So far, I have found creating anaglyph images mostly straight-forward (thanks to Maya's built in tools which make it much easier). I have learned a huge amount about the different types of stereoscopic 3D, and the rules that should be adhered to. Moving forwards I would definately like to try and apply these techniques to an animated version of the cells growing, although this will require significantly more render time to test... fortunately the render farm is working and I can take advantage of this again!

No comments: